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SUMMABY 

An experimentid investigation concerned p imar i ly  with the 
e&&n of t s t  data 071. the drag of revolving disks, qlinders, 
and streandim rods to high Mach numbers and Reynolds num- 
b m  is presemkd. A Mach number of 2.7 u w  reached for 
revolving rods with Freon 113 aa the medium. The tesh on 
&ks extended to a Reynolds number of 7,000,000. Parts o f  
the study are denoted to a reexumimtwn o f  the m K d d n -  
P r a d  logarithmic rmistunce law and the Ackeret-Taylor 
supersonic drag f m u l u  and conditions for the+ d a ~ .  
Thc tests c m ~ ,  in genera.& earlier theories and add certain 
ltew restclts. A$nding of f i s t  importunce is W the skin 
friction does not depend on the Mach number. Of interest, 
d o ,  w0 e x p e r i d  res& on rmlving rods at my high 
Mach numbers, which show drag curtres of th.e type familiar 
from b u l l i s h .  A new result which may huve general applic- 
ability is that the e&ct o f  surjace roughness inoolves two distinct 
parameters, particle size and particle unit density. The pad- 
icb sizs uniquely detmnina the Rq~noMs number at which the 
e$& of ths r o u g h s  f i s t  appears, whereas th.e particle unit 
density dett?rmina the behavior of the drag coqjbieni  at h i g h  
ReynoMs numbers. Beyond i9u critical Reynolds number at 
which tha r o u g h s  e#& appears, the drag coe$%ieni is found 
to be a function of unit W y .  In the limiting m e  o f  particle 
“ s d w a t h , ”  or a maximum & d y  of particles, the drag 
c o e w  remains conshni  M( the B e . M s  number is 
increaaed. 

THEORETICAL BACKGROUND 

VON E.&RMhN-PRANDTL TFIEORY FOR PIPES 

Measurements of the value of the skin friction between u. 
fluid and a solid constitute one of the meam for studying 
the nature of turbulent flow. Most of the pioneer analytical 
work in this field is found in the papers by von K h 4 n  (ref- 
erenm 1 and 2) and Prandtl (reference 3). The troat- 
mont used in the h t  part of this section follows the work of 
Prandtl which, in turn, is closely related to the von K&rm&n 
papers. The theory, which c o n m  the flow in pipes, is 
given in considerable detail aa it forms the basis for the suc- 
ceeding discussion on flat plates, cylinders, and disks. The 
theoretical work in this section constitutes mainly an at- 
tempt to analyze and organize earlier work found in many 
scattered art!icles. Considerable work along such lines has 
already been done by Qoldstein, who is responsible for an 
oxpression for the drag on revolving disks. 

The von Ktbrnh-Prandtl theory for flow in the turbulent 
layer is bnsed on the following two assumptions: 

(1) The ratio of the velocity deficiency to the friction 
velocity is a function of geometric parameters only. 

(2) Adjacent to the wall, but beyond the laminar sublayer, 
the slope of the curve representing this ratio is inversely 
proportional to the distance from the wall. The constant 
of proportionality is a universal constant. 

The friction velocity is dehed  ns  

and the corresponding friction length is defined as 

L=& 

(All symbols used in this paper are defhed in appendix A.) 
A reference time may be given as 

The geometric conditions for a pipe are given by one param- 
eter, the radius a. A revolving cylinder of infinite length 
represents another singleparameter case, in which the refer- 
ence parameter is the radius of the cylinder. 

The equation of motion can be written in the form 

and, by adopting suitably defined mean values with respect 
to time, at a given pro& 

Henceforth u will designate such mean velocity. By 
measuring the velocity with respect to a velocity ZJe in a 
k e d  geometrical position c=ka, 

is obtained. About 1030 von K b m h  showed that for the 
turbulent layor this function is essentially independent of L 
and dependent only on the geometry as indicated in assump- 
tion (1) ; therefore 

u- u, 
-=fa U, (z) 
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This quite r emkab le  relationship, which has been generally 
confirmed by Nikuradse, Wnttendorf, and others (references 
5 to 7), implies a similarity in the turbulenbfield pattern 
nmay from the molls at all Reynolds numbers. The basic 
reason for this similarity remains unknown. 

It follows €ram ssumption (2) that near the wall 

=I K log $+Constant 

where l / ~  is the constant of proportionality. (Natural 
logarithm haa been used throughout except where othenvise 
indicated.) Since u= Ua at y=6, this relation reduces to 

This logarithmic relationship holds to a certain value c of 
the signi6cnnt p a m e t e r  a (see fig. l), where c=ka vith k a 
constant. The value of 1-k is only a small fraction, so 
that the point c will be relatively close to the mall. The 
velocity in the center of the pipe is therefore given as the 
sum of three exprssions, that is, 

For the lnminar sublayer 

ua 6 
u. E=a -- 

and the equntion mny be rewritten as 

l a  =a+; log E+"* 
whero 

and 

1 C,=a-- log a 
K 

c;= f I! +-log; c (a)]: : 
The const.ant C1 is equal to the nondimensiond velocity 
measured on the logarithmic velocity profile when this 
curve is extrapolated to y=L, and the constant Cr is the 
e x w  velocity in the center of the pipe 8s compared with 
that of the logarithmic line extended to y=a. (See fig. 1 .I 
When these constants axe combined, the following general 
relation is obtained: 

qy ="+; l a  log E 

The application of this theory to caw other than circular 
pipes is restricted to geometric configurations given by a 
single parameter. It is interesting to observe that both 

Cl and 1 / ~  are universal constants resulting from tho second 
assumption-namely, that the flow near a wall is a function 
of the distance from the w d  only The second constant 
C; which gives the excess velocity na compsred wit11 tho 
logarithmic distribution at a reference point, the locntion 
of yhich depends on the geometric dimensions involved, is 
not a universal constant but is dependent on the configurntion 
nnd the choice of reference length. 

The effect of surface roughness may be treated in a similnr 
manner. If the roughness parameter e/L js less than a cerhin 
ma-dtude, there is obviously no effect a t  d. This vnlue 

of a/L is found experimentally to be 3.3. > 3.3, 

U&Ur is shorn to be constant, or independont of L, 
except for the so-called unsaturated condition which will be 
dehed  later. Thus 

For 

1 a -- u- "+,log 3.3 ; 
UT - 

or 

The velocity distribution is .exactly ns  if there were n 
laminar layer present of a thickness 6 c 3 . 5 ~  or ns  if the length 

1 1 L were - E- When L < s  E >  the velocity dishibution no 3.3 
longer changes with an increase in Reynolds number R. It 
seems, therefore, that the distance from the wall of the 
innermost disturbance, or the mean value of the thickness 

Q..." 
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of the laminnr layer, is of the order of three to four times 
the height of the irrcgularitim or the grain size E .  This fact is 
not inconsistent with the physical interpretntion. 

The quantity U&U7 is shown to equal dg. Further, 

and, therefore, 

where R is referred to the mmimum velocity and is equal to 
Umap.Iu. The equation 

may thus be written 

E= C+: log R fi 
or 

where 
1 c-- R log1& 

Ca = 
\I3 

By the similarity hypothesis, the m a n  velocity in n pipe 
difTers from the maximum value by a constant, or 

where 0, is the mean value of the velocity. Prandtl gives 
4.07 for the valua of K2. Note 
further thnt the product R G  remains the same whether 
R and CD refer to the mean or the maximum value of the 
velocity; therefore, 

(See reference 3, p. 142.) 

and, finally, with R and CD referring to the mean velocity, 

where 

With 0=5.5 and ~=0.4, 

P, ~ 0 . 4  

This value is not accurately established, as the various 
authors seem to differ. 

DRAG OF FLAT PLATES 

In order to obtnin the drag formula for flat plates, n 
calculation similar to the von KBrmh-Prandtl treatment 
for pipes may be performed. The velocity deficiency Auk 
given by the relation 

where UTm is a mean value between 0 and 2, the distance 
along the plate. The missing momentum may be mitten as 

or 

where U is the strenm velocity and 61 is a significant length 
giving the thickness of the boundary layer. Rewritten, 
this equation becomes 

or, by virtue of the similarity law, 

Since the momentum is given directly as 

the following identity is obtained: 

or 

Using the logarithmic deficiency relation gives for C5 the 
value I/., or 2.5, and for c6/c5 the value 2 / ~ ,  or 5; thus 
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By use of the von KhBn-Prandtl  treatment, the stream 
velocity is obtained in essentially the same form as for pipes. 
With small adjustments, therefore, 

By use of the expression for &/x, the following equation is 
obtained: 

R z C D m  -K4+4.07 log,, 
1 - 3 . 5 4 G  

LOCAL VALUES OF DRAG COEFFICENT FOR FLAT PLATE9 

It may be noted that a relation for the local drag co&cient 
on a flat plate may be found in a fashion similar to that used 
later for a disk. Consider a plate of unit width; for the full 
length I, 

With the subscripts m and z referring to mean and local 
values, respectively, for the length x, 

or 

Therefore 

where 

BOUNDARY RELATION FOR REVOLVING DISK8 

The moment coef6cient is defined as 

The moment may also be mitten 

M = 2 p  (24urup. dy 

where u, is the variable radial velocity and ut is the tnngen- 
tial velocity, from which 

or 

!!!=constant a 

The drag formula then reads 

A similar result was obtained by Goldstein in referonce 4. . 

TESTS A N D  RESULTS 

Tests on disks, cylinders, and streamhe rods wore con- 
ducted to determine drag or moment coefficionts. For tho 
cylinder the two coefficients are equivalent; for tho disk and 
the rod it is more convenient to employ tho momont coo5- 
cient, which can be msasured directly. In order to oxtond 
the range of Mach number, several tests WOTC conducted 
with Freon 12 or Freon 113 as the medium. Tho test 
results obtained are of technical interest bccause mmo of 
the data, particularly for the high Mach numbor rango, 
were obtained for the first time. It may be pointed out 
that many of the earlier tests on revolving disks and, in 
particular, on revolving cylinders more conductod on n 
rather amah scale and in a limited range of Roynolds num- 
ber. It may be notrd that a considerable mngo of Roynolds 
number is generally needed in order to confirm with s u 5 -  
cient reliability a particular theoretical formula. For 
instance, it may be impossible to obtain a meosurable 
difference between logarithmic or power formulas if a short 
range of Reynolds number is available. This mattor of 
distinguishing between the various types of formulas is of 
theoretical interest. 

EXPBRIMENTB ON REVOLVING DISKS 

The moment coefficient is defined as 

M Cx=, 
7Pw’a6 

This definition corresponds to the one for laminar flow on a 
revolving disk given by von K6rmfin in referenco 1 as: 

Cdd = alR-In 
where 

CLULz E=- 
0 
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 won Kdrm@'s lamnor-ffow formula, o 24-1k-diam. &sh h ah 
'\,/ . -CM-987R- -b l Z - a - d a m .  dish in cvF . 

I x .%all akks on synchronous motor 
0 A r  jet on smooth 24-in.-dom d&h 
0 6Omesh scnd on 24-1n.-dam. &k \ x  . 

X 

\ I I  

The constant a used by von K:&rm8n was 1.84 for one side 
or 3.68 for both sides; this value was later adjusted by 
Cochran (see reference 8, vol. I, p. 112) to ul=3.87. I f  this 
corrected value OI al is inserted, the formula for laminar 
flow rends 

Ck= 3.87R-'" 

The turbulenbflow formula as given by von K:&rm&n for 
revolving disks is 

ck=0.146R-'/6 

In figure 2 are shorn the experimental results for tests of a 
series of revolving disks. The' Reynolds number ranged 
from about 1600 to more than 1,000,000. Note that the test 
points lie along the theoretical curves given by the von 
KSrm&n formulas. The transition from laminar flow is seen 
to occur a t  R=310,000. This was the lmgest value reached 
with the most highly polished disk. 

The thickness of the laminar boundary layer is, according 
to von K&rm&n, 

6=2.58 - 8 
or, which is equivalent, 

6 -=2.58R-'P 
U 

b w a  Using Ra=- leads to 
U 

For the transition Reynolds number, 310,000, 

= 1440 

which is of the same order as the minimum critical vdue 
obtained for pipes. 

Several tests were conducted for the purpose of investi- 
gating the factors affecting the transition Reynolds number. 
The h t  observation was that the transition Reynolds num- 
ber could not be increased beyond the value 310,000 no 
matter how highly the surface was poliahed or whatever 
othar precautions were taken. Likewise, it was unexpectedly 
difEcult to decrease the transition Reynolds number. The 
application of c o m e  sand (60 mesh) glued to the surface of 
a disk (1-ft radius) only reduced the transition Reynolds 
number to about 220,000 (fig. 2). The reduction in the 
transition Reynolds number by initial turbulence was also 
studied. A small  high-pressure air jet applied near the cen- 
ter of the disk produced the greatest observed reduction 
(k. 2) and brought the transition to a point near the inter- 
section of the lines representing the drag formulas for lami- 
nar and. turbulent flow, which is the absolute minimum. 
Note that the drag in the turbulent region is quite appre- 
ciably increased by surface roughness. 
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The values of the moment coefficient given in figure 2 
repreaent obviously an integrated drag over the disk. An 
expression m y  be obtained for the locnl drag coefficient C D ,  

as a function of local Reynolds number 8s follows: 

By substituting 

or 

and 

where 

If 

then 
C,=* 

By we of the expression for log C'D,, some of the data of 
€igure 2 are plotted in figure 3. Although the general picture 
does not change much, the abrupt nature of the transition 
becomes apparent. 
An illustration of the boundary-layer profiles for various 

rndii or Reynolds numbers is given in figure 4 ,  in which 
curves of equnl velocity uJ0r are also plotted. Note that 
the thickness of the boundnry layer in the laminnr region is 
essentially constant. The transition value of R, 310,000, 
is shown approximately by the line marked "Approx. 
transition" in figure 4. The nominal laminar boundav- 
layer thickness consistently apponrs to be somewhat in excw 
of that given by von K4rmfin in reference 1. There appears 
to  be some discrepancy from the theoretical velocity distri- 
bution which is shown for the laminar boundary layer ns 

hcrrar. 3.--Loeal drag owfedent for d k b  obfained by dlf[erentlatlng the momentcoef8dent carve. 



DRAG OF REVOLVING DISKS, CYLINDERS, 

obtained from work by Cochran. (See reference 8, vol. I, 
p. 112.) It is recognized that the experimental error in this 
cnse is of considerable magnitude. The turbulent boundary 
layer shows h o s t  perfcct agreement with the logarithmic 
curve, which is plotted for one profle in figure 4. 

It may be remarked here that a series of hot-wire tests 
were run to study fluctuations in the boundmy layer with the 
following results : 

(1) No disturbnnces were noted in the laminar region 
(2) A pure tone of a frequency of about 200 cycles per 

second was observed in the trmition region 
(3) A random disturbance involving much higher fre- 

quencies wns observed in the turbulent region 
In figure 6 the upper range of the Reynolds number has 

been considerably extended. The highest Reynolds number 
1 

rcnched is 7,000,000. The 7-powerlaw holds fairly well in the 
observed range which, however, is b o  limited to permit a 
distinction betweon the power law and the logarithmic law 
for the velocity distribution. The main purpose of the teats, 
the results of which are shorn in figure 6 ,  was to investigate 
the effect of the Mach number. The b t  run taken with air 
ns the medium extended to a Reynolds number of about 
2,000,000 and a Mach number of 0.62. By using Freon 12 
ns the medium, the range of Reynolds number was extended 
to 7,000,000. At the lowest pressure, the highest value of 
the Mach number reached wns 1.69- All the data for Freon 12 
shorn a slightly higher drag than that given by the von 
R&rmfin formula, apparently because of some systematic 
error, The. significnnt result of this investigation is that the 

8 85 9 95 
303, a00 
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drag coefficient is absolutely independent of the Maoh 
number. A separate extension of the experiments to  a Mach 
number of slightly more than 2 further conhned this inde- 
pendence of the iMnch number. 

VD STREAMLIATE RODS AT HIGH SPEEDS 

EXPERIMENTS ON REVOLVING CYLTNDERS 

The experimental results for revolving cylinders are shown 
in figure 6 as a plot of log&D against log&, where R=Y- w a g  

The drag formula for laminar flow on a revolving cylinder 
is obtained from Lamb (reference 9, p. 588) as 

where 

In this formula S is the surface area and a the radius. In 
this w e  it is convenient to use C D  instead of Ck, which was 
used for the revolving disk, because no integration is in- 
volved. The laminar curve is shown in figure 6. The drag 
relation given by 

0.64-4.07 log,, R a ,  ,m- 
for the turbulent flow is also s h o r n  in figure 6. 

I O  /a5 f I Dish radius 
3 7 0 . m  

t4br 

h o n a ~  L-ObServed valoalty pro& on revolving d l n b  showing the tranrltlon d o n .  
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R 
h a w s  &-Moment &dent for disks as function d Reynolds number fur saveial va3.w of Maah number with and Freon l2 as medInma. Marlmum hIaoh number, LE@. 
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The experimental results are replotted in figure 7, where 
1 fi is shorn na a function of logl&/%. The relation 

for the turbulent flow 

--0.6+4.07 log,&dG a- 
appcars in figuro 7 as a straight line. The coefficient C, in 
this formula corresponds to a value of 0.4 for von E;&rm&n’s 
universal constant K .  The relation for the laminar region 

U D = ~  appears as a curved line near the origin. 

I t  is noted that the drag coacient for rough cylinders is 
dependent on tho relative grain size ala, where e is the size 
of tho sand and a is the radius of the cylinder (see fig. S), 
and that for mch grain size the drag codcient remains 
constant and independent of the Reynolds number beyond 
II certain minimum or critical d u e ,  which lies on the line 
for turbulent flow. In regard to the magnitude of the drag 
coefficient as a function of relative grain size for particle 
“saturation” of the surface, it may be remarked that the 
valuo of 6 is a memure of the thickness of the sublayer or, 
what amounts to the same thing, a measur0 of the minimum 
grain size of the turbulence. It is therefore to be expected 
that the surfacs roughness will become &ective at the 
Reynolds number for which e,, the critical value of e, be- 
comes less than the grain size E. Inversely, it may be seen 
that, if tho Reynolds number becomes smaller than this 
c r i t i d  value, the grain size of the turbulence is too large to 
be, affected by the surface roughness. With e greater than 

which is 3.3L, the following relation is approximately 
true for the drag coefficient beyond the critical Reynolds 

4 

? 
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number for surface roughness of saturation density: 

1 
~ = - 0 . 6 + 4 . 0 7  log,, 3.3.JZa € 

=2.12+4.07 log,, 7 U 

In figure 9 the e q e r i m e n t a l  points me shown to satisfy this 
theoretical relation with suf6cient accuracy. 
Tests mere made to determjne the &ect of the density of 

spacing of g r a d  of a given size, and the results nre presented 
in figure 10. Such tests mere mnde with a certain unit 
grain size but with tho surface density in grains per squaro 
inch varied between 90 and 2200. The grain size used:cor- 
responds to the size ;=0.03, also used for the preceding os- 
perimenhl results shown in figure 8. It is verified that tho 
critical Reynolds number depends on the grnin size only, 
and it is further shorn that the slope of the drag curvo 
beyond the critical Reynolds number is a function of the 
density. A saturation condition evidently always exists, 
in which the drag co&cient remains approximately con- 
stant and equal to the critical value. 

E 

EXPERTMENT8 ON STREAMLINE RODS 

In figure 11 results are given for certain more or less stream- 
line bodies, ench tested in two or more different mediums. 
The tests were obtained by using actual propellers of 12-inch 
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diameter, which are dcsignated propellers B and C. Pro- 
peller 13 had a section of double symmetry with a circular-arc 
contour line. Propeller C mas obtained by reducing the 
chord of propeller B by removal of about one-fifth of the 
chord near one extremity to obtain a blunt-nose airfoil. By 
running propeller C backwards rm airfoil with a blunt trailing 
edge could d s o  be studied. The coefficient used in fi,wes 
11, 12, and 13 is t,ho standard torque coefficient. for 
propellers 

c"=m Q . 

For the symmetrical airfoil B, a value of the Mach num- 
ber of about one wns reached in air, the range mas extended 
to  1.6 in Freon 12, and the characteristic decrease in the drag 
coefficient mas finally reached in Freon 113. A,considerable 
decrease in drag co&ciont wna noted a t  the largest Mach 
number, 2.7, which to the knowledge of the authors is the 
highest Mach number reached exept  for a few cnses of 
pro j ectilcs. 
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0 .4 B 12 l.6 
Mach nunber, M 

Fraws 12-Torqae &dent CQ& BS fmotlon of Na& number for propellar E. 

0 2 .4 s .8 ID I2 
Mach nunbar, M 

 prow^ 13.-Torqoe co%fllcIent CpsP BS function of Maoh number for propeUer D. 
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The blunt-nose airfoil section C showed approximately the 
same low-speed resistance as the symmetrical sharp-nose 
section B but had a maximum torque coacient very much 
in excess of that of section B. The test extended only to 
near the peak of the torque curve with Freon 12 as the 
medium. By reversing the direction of motion of propeller 
C to obtain a blunt rear, the expected large increase in drag 
a t  low Mach numbers was observed. The appreciable 
difference in Reynolds number for air and Freon 12 is 
apparent from the difference in drag co&cients in the range 
below a Mach number of unitg. For higher Mach numbers, 
tho drag co&cient of the section with the blunt rear lies 
betmeen the drag coefficients of the doubly streamline section 
nnd the blunt-nose type; the streamline leading edge is 
approximately tmice as effective as the streamline trailing 
edge, a result in general agreement with earlier observations. 
It should be noted, however, that the lowest drag is obtained 
with both lading and trailing edges streamlined. 

The effect of the Reynolds number is &o shown in @e 
12, which gives the results of tests to study how the scale 
effect is superimposed on the Mach number effect. It should 
bo noted rtgain that the Reynolds number effect appecus only 
for a Mach number below unity. A wide variation in the 
Reynolds number shows no consistent measurable effect on 
tho h g  for a Mach number greater than unity. Similar 
data for a small angle of attack, instead of zero angle of 
attack as used in the preceding discussion, were used in one 
case, for which results are given in figure 13. 

The four propellers referred to in figures 11 to 13 me shown 
in photograph (fig. 14) and the dimensions of the propellers 
are given in table I. 

TABLE I 

DIMENSIONS OF PROPELLERS OR REVOLVING RODS FOR 
TESTS AT HIGH MACH NUMBERS 

fn %. 14.1 
All pro&lemhve a straight taper In chard and Thew are romded as a h m  

I I 

I I 

o[;tbe D m twisted m that appmdmatdy the ontar half of the blade had an angle 

It is of some interest to interject a supeficial analysis of 
the results prssented herein, in view of Ackeret's formula 
as given by Taylor (reference 10). For the local section 
Ackeret gives the drag coefEcient as 

where the bar indicates the mean value. For zero angle of 
attack and a symmetric section mith g=x this relation 
becomes 

1 
3 

For a circular-arc section, p=- prn.2, whom pmo+ IS tlic 

maximum angle. This angle is, in turn, approrcimntoly 
equal to twice the thichess ratio t ,  which is tho total thick- 
ness divided by the chord. For circular-arc scciions, 
therefore, 

Figure 15 shows CD plotted against h4acli numbor for 
different values of t. At M=1.0, the curves tond erronoously 
to idnifiy. This effect follows from a simplifying assumption 
used in tho derivation of Ackeret's formuln. 

. - .  -- - - . - - -  __ 
piSare l4.--prO@ler8 B, 0, D, and E. 

I 

F I Q ~ E  K-Theoretical m e s  of the drag d o l a a t  CD Ma& numbor for wbus 
thlcknfm intlos for dmnlar-am alrIoIls by Ackieret's formula. 
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By using the generd formf (&I) instead of the Mach num- 
tp ber function 3 - 1 ,  the drag coefficient may be written 

c D = Y  e(lM) 

The torque coefficient is h o r n  experimentally to be a 
function of the Mach number, or l/q, where z1 is the fraction 
of radius a t  which the Mach number is unity; thus, the fol- 
lowing integral relation is obtained: 

There are several ways of handling this relation. The non- 
dimemional chord c and the thickness t may be taken to  
roprcaent a preferred section at approximately 80 percent 

M a c h  m b e r . M  
Flame lB.-Velue of ding function I(M) an innotion of Mach number from anal& of 

arpUimantal moment arm for propeller B In flgme 11. 

of tho radius. By assuming an initial drag co&cient C D  
any desired accuracy may be obtained by iteration methods. 

The functionf(M) shown in figure 16 has been obtained 
for propeller B by such a process based on the experimental 
data given in figure 11. Note that the drag coefficient 
approaches the vdue given by the Ackeret formula for large 
values of M, for whichf(M) approaches (M9-l)-1’*. Note 
further that the maximum value of the drag coefficient 
occm at M=1.2 withf(M) almost exactly equal to unity. 
It is, of come, not to be concluded that the functionf(d4) 
has general validity; the function is given here for propeller B 
for the purpose of comparing the data with the Ackeret 
theory. 

CONCLUDING REMARKS 

Experimental results on the drag of revolving disks have 
been presented, which substantiate to a remarkable degree 
drag formulas baed  on the von Ktkmh-Prandtl theory of 
skin friction. The range of the investigation wm extended 
to a Mach number of 1.69, which is beyond the range of any 

sarlier test, and to a Reynolds number of 7,000,000. It was 
established that the akin friction is independent of the Mach 
number up to this value and appears to be a function of the 
Reynolds number only. 

The drag at supmonic speeds was studied with revolving 
rods or propeller sections. Mach numbers as high as 2.7 
were attained in the teats. The drsg at supersonic speeds is 
a function of the Mach number only, as it appears to be essen- 
tially independent of both the Reynolds number and the 
nature of the medium. The characteristic peak in the drag 
curve observed for projectiles was obtnined. For thin 
~trsamline bodies, this peak appears at Mach numbers only 
slightly beyond unity; in fact, it appears at 8 Mach number 
of about 1.2. Systematic testa were conducted on strenm- 
line bodies with combinations of sharp and blunt leading 
and trailing edges for the purpose of obtaining the relative 
merits of such features. It was found that the increase in 
the peak value of the drag coacient resulting from a blunt 
nose is about twice that resulting from a blunt trailing edge, 
when both drag coefficients are compared with the drag 
coefficient of a section with streamline leading and trailing 
edges, which has the lowest value. 

Si@cant results mere obtained on revolving free cylin- 
ders for which references to earlier tests seem to be lacking. 
It was found that, at very low Reynolds numbers, the h m  

asymptotically approaches the laminaz drag of the classid 
theory whereas, at higher Reynolds numbers, the drag is 
found to conform to a logarithmic formula of the von 
K h 8 S  type. There is no distinct transition from laminar 
to turbulent flow, as is found in pipes and on revolving disks. 
The flow is essentially turbulent down to the smallest 
Reynolds numbers. 

The effect of initial turbulence was particularly studied in 
connection with tests of revolving disks. It was found that 
the transition Reynolds number was very slightly affected. 
The critical Reynolds number at which the roughness effect 
appears depends on particle size only and is not a function 
of particle density. Beyond this value of the Reynolds num- 
ber, the drag coeflicient is constant only when the surface 
is “saturated,” that is, when the density of the individual 
particles attains a mmimum value. For a roughness of less 
than this particle density, the drag coefficient decreases with 
Reynolds number. 

It is interesting further to note the persistence of the 
logarithmic relationship. When l/G is plotted as a func- 
tion of log B G  (where CD is the drag co&cient and R 19 
the Reynolds number), the linea representing turbulent flow 
are invariably straight. A rather critical demonstration of 
the logarithmic vdocity pattern near the surface is thus 
shown. The range investigated is of considerable extent. 

LANQLEY M ~ n r o m ~  ~ R O N A U T I C A L  LABOEATOEY, 
NATIONAL ADVISORY C O ~ N E  FOR ADRONAUTICS, 

LANGLEY PIELD, VA., April 24,19&. 



APPENDIX A 
SYMBOLS 

I -r 
TO 

P 
U, 
U 

Ua 
U 

AU 

'u.1 

ut 

6 
61 
L 
1 
T 
f 

0 

V 

Ir 
r 
a 

2 

Y 
1 

' J  

C 

($9 friction velocity 

shear per unit area at-surface 
mass of air per unit volume 
mean fi-iction velocity (from 0 to 2) 
stream velocity for flat plates 
maximum velocity 
mean velocity (in pipes) 
reference velocity (at a given fraction of 
radius or of other reference dimension) 

velocity at 6 
absolute variablc velocity of fluid in 

velocity ddciency, stream velocity minus 

radial velocity for disks 
tangential velocity for dish 
angular velocity, Fadians 
thickness of laminar sublayer 
boundary-layer thickness 
friction length (u/U,) 
total length of plate 
reference time (L/U,) 
time: also. thickness ratio for vroveller 

boundary layer 

local velocity for flat plates 

- A  

Thickness of airfoil section ( Chord 

coef6cient of h e m a t i c  viscosity 
co efficient of viscosity 
variable radius of pipe, disk, or propeller 
radius of pipe, cylinder, or disk; also, 

velocity of sound in fluid 
distance from leading edge of flat plate in 

direction of flow; also, fraction of pro- 
peller radius X=B where R denotes 
radius of propeller tip 

fraction of propeller radius at which Mach 
number is unity 

distance normal to surface 
nondimensional prof& constant for turbu- 

fraction of reference dimension -=k J 

also, nondimensional chord of airfoil 

) 
( r  

lent flow near walls 

(: >- 

81, a 
8- 

Cl 

G 

angle of attack of airfoil; also, profilo 

tot,al-d.rag coefficient (Many authors us0 f, 

mean drag coefficient (from 0 to 2) 
local drag coefficient 
drag; also, propeller diameter 
drag of plate (from 0 to 2) 

grain size of roughness 
grain size of critical rougllnoss for particu- 

moment coefficient for revolving disks 
missing momentum; momont for disks; or 

iMach number 
Reynolds number 
Reynolds number based on thickness of 

boundary layer 
Reynolds number baaed on distnnco from 

leading edge of flat plate or on local 
radius of disk 

Reynolds number based on pipe diamotor 
Reynolds number based on pipe radius 
velocity (Ackeret formula) 
dynamic pressure for cylinders, q=spw2a2) 

area of cylinder 
torque coefficient (Q/pn2Ds) 
torque 
number of blades 
rotational speed, revolutions per second ; 

also, coefficient in power law 
angles which upper and lower surfaces of 

airfoil make with center line 
maximum angle which circular-arc soction 

makes with center line 
nondimensional velocity measured on log- 

arithmic velocity profle when this curve 
is extrapolated to y=L 

nondimemiond excess velocity at  y=a 
over thnt of logarithmic line extonded 
to y=a 

constant (6/L) 

7, or X/4 instead of CD for pipes.) 

lar value of drng coefficient 

1 ( 

constants 
constants 
constant 
constant in equation for moment coeffi- 

cient of revolving disks 
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APPENDIX B 
NUMERICAL VALUES OF POWER REQUIREMENTS FOR REVOLVING DISKS AND CYLINDERS 

A chnrt is presented (fig. 17) which gives the horsepower 
required to drive a smooth disk in standard air (760 mm 
and 16' C, p=0.00238 slugs/cu f t  and u=0.000159 fi?/sec). 
Lines of constant horsepower ranging in value from 0.01 to 
1000 are plotted with disk rotational speed (in rpm) as 
abscissa and disk diameter (in ft) as ordinate. T h e  dashed 
line in figure 17 represents a Reynolds number of about 
400,000, which is considered the transition Reynolds 
number. 

The following formulas were used to calculate the power 
for disks operating in the turbulent region: 

U-llSa-4/6p-1/5 

=0.146 / p / s  

Horsepower=m MU 

0.146 ,- os 16 e8 0.2 
650x2 '  a 

Innsmuch na the formula for Cu is based on the 1/7 
power for velocitg distribution, the calculated values of C, 

are too low for high Reynolds numbers. This error may 
become appreciable for the lllghest power, since the chart 
(fig. 17) covers a range of Remolds numbers t o  60,000,000. 

A chart is also presented (e. 18) which gives the horse- 
power required to rotate a smooth cylinder of unit length 
(1 f t )  in standard air. The following formulas have been 
used in calculating the curves: 

Mo=C&W 

Hompow0r=- MU 
550 

C.Upa4d =- 
550 

where, for smooth cylinders, 

E=- 0.64-4.07 log,, RJC, 

and, for rough cylinders, E > E -, 

a -- -2.12-l-4.07 log,,; 
4% 

Rofofiwml speed r p m  

prom Ig-Powa reqalrement for m t h  oyllndars ( 1 4  length). 
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APPENDIX c 
COLLECTED SHIN-FRICTION FORMULAS 

F%AT PLATES (ONE SIDE) 
SYMBOLS 

The following symbols are used iu the formulas for flat 
plates collected herein: 

OD total drag coefEcient 
00, local drag coefEcient at point z 

2 distnnce from leading edge of flat plate in direction of 

1 length of flat plate in direction of flow 
R Reynolds number bnaed on 1 
R, Reynolds number based on z 

flow 

LAMINAR FLOW 

The formula for total drag coefticient 

CD= 1.32812-'" 

is bnsed on the simplified hydrodynamic equations developed 
by Prandtl in 1904. (See reference 2, p. 2.) The constant, 
which wns calculated by Blasius in 1908 as 1.327, was cal- 
culated by T8pfer in 1912 as 1.328. (See reference 3, p. 89.) 
The formula for local drag coacient is 

UD,=0.664Rz-" 

Von K&rm&n, Schoenherr, and others have indicated that, if 
the total drag coe5icient is 

UD=Constant R" 

bho locnl drag codcient is given as 

QDx= (n+ 1) CD 

This relation is derived in the section entitled "Local Values 
of Drag Codcient for Flat Plates" in this paper. All for- 
mulns given in this appendix for the local drag on flat plates 
aro in conformity with this derivation. 

TURBULENT F L O W 4 M O O T H  SURFACE 

The formulna 

mid 

wore h t  calculated by von K h h  in 1920. (See references 
1 

1 and 2.) Bnsed on results from pipes and on the ?-power 
law for velocity distribution, they are consequently valid 
in, the Iowcr Reynolds number range, R<10,00O,000. 

382 

Some writers use the following formulas of the same 
type, which are fairly accurate to a Reynolds number of 
500,000,000: 

CD = o.030R-1n 

Of more general validity are the so-called logarithmic drag 
formulas of the type 

~ - = 4 . 1 5  1 logl$cD 
CD 

The form of this relation was determined by von K h h  
with constants adjusted to conform with data by Schoenherr 
andothers. (See reference 2, p. 12.) In the present paper 
a different form has been developed, which is in somewhat 
stricter theoretical conformity with the physical relations 
involved : 

-- 1 ROD 
G-4*07 log,, 1-3.54mD 

Prandtl has developed an explicit expression which gives 
essentially the m e  results as the logarithmic formulas. It 
is 

(See reference 3, p. 163.) The local drag coefficient has also 
been given by von K&m&n in a logarithmic form with the 
conshta  adjusted to fit the experiments of Kemp, which 
included measurements on small movable plates inserted on 
a long pontoon. This formula is 

-- -1.7-l-4.15 logl&C, G 
(See reference 2, p. 12.) 

TURBULENT FLOW-ROUGH SURFACE 

Schlichting (see reference 8, p. 382) gives the two following 
formulas for the total and the local drag coefticients for rough 
flat platw, respectively: 

-2 6 
CD=( 1.89+1.62 log,, 2) 

E 

cD,=( 2.87 + 1.58 log,, 2)-y5 € 

Von K h h  (reference 2, p. 18) gives for the local drag 
coefficient for rough surfaces a formula of the logarithmic 
type 

-- 1 -5.84-4.15 log,,: , I C  
K z  
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PIPES 

SYMBOL8 

The symbol Rd used in this section refers to the Reynolds 
number based on the pipe diameter and the mean flow 
velocity, and the symbol R, refers to the Reynolds number 
bnsed on pipe radius. Some writers use f or y instead of 
OD, used heroin, m d  others ~ 8 8  X where X=4cD. 

LAMINAR FLOW 

For laminar flow in pipes the formula for drag coefficient is 

16 OD‘K 

This formula is attributed to Poiseuille and Wiedeman. 
(See reference 3, p. 38, and reference 8, p. 298.) 

TURBULENT FLOW-SMOOTH SUBFACE 

Tho formula for drag coefficient for turbulent flow in 
smooth pipes is 

This formula is based on the experimental workof Blasius 
(seo reference 3, p. 136), for which the Reynolds number 
range was rather limited. Later work by Niliiadm (ref- 
erence 6 )  extended the range of Reynolds number to a 
much higher vdue. The follo- formula of the type 
devnloped by von K:&rm&n fits the data bettar: 

~ D = O . O ~ ~ R ~ - - ” ‘  

(Seo reference 8, p. 338.) In the present paper a formula of 
this typo with dif€erent constantv is developed: 

TURBULENT FLOW-ROUGH SURFACE 

For turbulent flow in rough pipes 

a -- I -3.46+4.00 log,,; a 
Tho experimental work in deriving this formula was done 
by Nikurndse. (See reference 8, p. 380, and refexence 0.) 

REVOLVING DISBS 
SYMBOLS 

The following symbols are used in the formulas for revolv- 
ing disks: 
r/, moment coefficient 
U D ,  local drag coefficient at  r d u s  2 

R, Reynolds number at radius z ($) 
LAMINAR FLOW 

For laminar flow 
Cx=3.87R-‘ ’ 

and 

This formula for local drag coefEciont is derived froin the 
rela tion 

For the development of this relation and for referonax, seo 
the section entitled “Experiments on Revolving Disk.” in 
this paper. 

TURBULENT FLOW 

For turbulent flow 
Cu = 0.146 E-‘.’ 

and 
om= 0.O53R,-‘Ib 

The foimula for the local drag coefEcient CD, is derived 
from the equation for the moment coefficient Ck iu the same 
way as for the case of laminar flow. The lo& drag. coefficient 
in logarithmic form may be given as 

1 7 = - 2 . 0 5 + 4 . 0 7  3 Dx log,, R,-@; 

The constant -2.05 has been adjusted to fit the dnta of 
figure 3.  

REVOLVING CYLINDERS 

For laminar flow 
CD=B 4 

For turbulent flow on smooth cylindem 

0.6+4.07 log,, R d G  1 

For turbulent flow on rough cylinders 

a -- --2.1+4.0 log,, - 1 a € 

The development of these formulas and the referencas me 
given in the section entitled “Experiments on Revolving 
Cylinders ” 
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